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Abstract

We present in this article a stochastic algorithm based mainly on [Monte Carlo Methods and Applications 5(1)

(1999) 1; Stochastic particle approximations for Smoluchowski�s coagulation equation. Technical Report, Weierstrass-

Institut for Applied Analysis and Stochastics, 2000. Preprint No. 585] applied to the integration of the General Dy-

namics Equation (GDE) for aerosols . This algorithm is validated by comparison with analytical solutions of the

coagulation–condensation model and may provide an accurate reference solution in cases for which no analytical

solution is available.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The gas-phase pollution has been widely investigated [3] and numerous three-dimensional models are

available. The next step is now to take into account the atmospheric particulate matter. Aerosols may
indeed have a strong impact on the atmospheric radiative balance, on the gas-phase concentrations (es-

pecially through the gas to particle conversion) and on man health.

Aerosol modeling in current 3D atmospheric Chemistry-Transport Models is usually made by appro-

priate parameterizations [4]. Size-resolved models are however a key issue [5] since many properties of

aerosols are deeply related to the size. It is also important to follow the aerosol size distribution (or density),
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let us note ASD, along time. The ASD evolution is modelized by the General Dynamics Equation (GDE)

[3] which takes into account the physical processes of aerosols as coagulation, condensation/evaporation,

nucleation, and removal.

Some models already exist to solve this equation and we will distinguish the so-called multi-modal models

for which an a priori form is chosen for the ASD and the size-resolved models which directly solve the GDE

with appropriate numerical schemes.

In multi-modal model the ASD is usually assumed to be a sum of log-normal densities, and the GDE is

solved through the ASD moments. We refer for instance to [6,7]. The advantage of this method is a few
number of parameters and a rather easy implementation. The limitation is however a possible lack of

accuracy since the only first moments of the ASD have been preserved.

In size-resolved methods the aerosol size spectrum is discretized into a finite number of bins and the

GDE is solved within each bin, whatever the numerical scheme is. This kind of method can be performed in

two different ways whether one solves each process separately or not.

Splitting is usually advocated in order to focus on each process separately. Coagulation is usually solved

with ‘‘size binning’’ algorithms. We refer for instance to [8,9]. The drawbacks of this method are the lack of

convergence results and the diffusion for large bins. Condensation/evaporation leads to an advection-
equation for the ASD for which many algorithms have been developed [10].

Nevertheless splitting always introduces a ‘‘splitting error’’ and the aerosol size grid may be different for

each process, which may imply some numerical difficulties.

With a coupling approach all physical processes are solved in the same time. This can be for instance

performed by finite elements methods applied to the whole GDE [11–13].

However, the main drawbacks of the previous approaches are the lack of theoretical results proving the

convergence of the numerical solution to the solution of the GDE. The GDE can be solved analytically for

academic cases only and validation for such cases does not ensure a good behaviour in more realistic
situations. The lack of reference solution has already been underlined for instance in [14]. Searching a

numerical reference solution, not necessary for operational purposes, is therefore a key issue. Such refer-

ence solutions do not have necessary to be computationaly efficient but highly accurate in order to be used

in benchmarks of fast numerical methods as those listed above.

Stochastic methods are good candidates for this role. They have already been used to solve the Boltz-

mann equation [15,16] and more recently to solve the coagulation equation [1,2,17]. The key advantage of

these methods is that they rely on a stochastic formulation of the GDE, which provides a basis for their

validity. They are moreover rather easy to implement.
We propose in this article an extension of such approaches to the whole GDE for single component

aerosols. The article is organized as follows: in Section 2 we briefly summarize the key features for the GDE

and we present the mass flow formulation. We present our algorithm in Section 3. Some numerical tests are

summarized in Section 4.

2. General dynamics equation and mass flow formulation

Notations and dimensions. In the following article the letters v and r will, respectively, always represent
the volume and the radius of one physical aerosol,1 they are expressed, respectively, in lm3 and lm. We will

refer either to v of r as the ‘‘aerosol size.’’ We assume one single aerosol is completely described by its size.

The term particle will constantly refer to numerical particle, which is defined in Section 2.2.

Air volumes are expressed in cm3, the aerosol concentration in air is then expressed in #aerosols cm�3.

We assume the specific mass of aerosols to be size and time independent, then the aerosol volume and mass

1 v and r are related by v ¼ 4
3
pr3 () r ¼ 3v

4p

� �1
3.
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concentration are equivalent. In order to avoid confusion between volumes of different kinds, we will al-

ways talk about aerosol mass concentration although it is in fact the volume concentration expressed in

lm3 cm�3.

The ASD describes the repartition of aerosol concentrations with respect to their size. This one is usually

represented by a continuous density of concentration nðv; tÞ so that nðv; tÞ dv is the concentration of aerosols

whose sizes range between v and vþ dv at time t. Then the dimension of nðv; tÞ is #aerosols cm�3 lm�3. Let
us note qðv; tÞ the aerosol mass density, which is merely derived from n by qðv; tÞ ¼ vnðv; tÞ.

The relative densities will be noticed ~nn and ~qq.

2.1. General dynamics equation

For a single component aerosol, the time evolution of n is then given by the following equation [3]:

on
ot
ðv; tÞ ¼ 1

2

Z v�v0

v0

Kðu; v� uÞnðu; tÞnðv� u; tÞ du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coagulation gain

� nðv; tÞ
Z 1

v0

Kðu; vÞnðu; tÞ du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coagulation loss

� oðI0nÞ
ov
ðv; tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

condensation

þ dðv0;vÞJ0ðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nucleation

�Rðv; tÞnðv; tÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
deposition

;

ð1Þ

where Kðu; vÞ, I0ðv; tÞ, J0ðtÞ, and Rðv; tÞ are, respectively, the coagulation, condensation/evaporation, nu-

cleation, and deposition kernels. The physical properties of each process is entirely described by their kernel

expression. According to the previous notations Kðu; vÞ is in cm3 s�1, I0ðv; tÞ in lm3 s�1, J0ðtÞ in #aerosols

cm�3 s�1, and Rðv; tÞ in s�1.

Aerosol size spectrum. The smallest size v0 is the aerosol size from which and aerosol becomes stable and

begins to grow, it is then the nucleation size. The coagulation loss term implies an infinite integral, actually

as large aerosols are finally removed from atmosphere by gravitational settling, 1 can be replaced by the

maximum vmax of aerosol size existing in the atmosphere.
Atmospheric aerosols radius usually range from 0.001 to 100 lm, which makes the atmospheric aerosol

Dynamics lie from the free molecular regime (Kn P 10)2 to the continuous one (Kn 6 0:1). Then expressions

of various kernels have to take into account both regimes. The nucleation kernel is not concerned as this

process does not influence already existing aerosols.

In Sections 2.1.1 and 2.1.2 we derive the usual expressions of the coagulation and condensation/evap-

oration kernels in the continuous regime, their complete expressions are given in Appendix A.

2.1.1. Coagulation kernel

The coagulation is mostly due to the Brownian activity [18], which may be written in the continuous

regime for spheric aerosols of size u and v as

Kðu; vÞ ¼ 2kbT
3lair

2

	
þ u

v


 �1
3 þ v

u


 �1
3

�
; ð2Þ

where kb ¼ 1:381	 10�23 J K�1 is Boltzmann�s constant, lair the dynamic viscosity of air, and T is the air

temperature.

2 Kn is the Knudsen number, ratio between the mean free path of air, kair, and the particle radius, for average atmospheric conditions

kair ¼ 0:0651 lm.
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That is to note the Brownian kernel can be considered in first approximation as a constant, indeed for

equal size aerosols the coagulation kernel is reduced to

Kðu; uÞ ¼ 8kbT
3lair

: ð3Þ

Therefore this constant is usually called the Brownian constant and is equal to 6:405	 10�10 cm3 s�1 for

average atmospheric conditions.

2.1.2. Condensation/evaporation kernel

The condensation/evaporation process describes the relaxation to an equilibrium between aerosol and

gas phases for one chemical species i. The equilibrium is usually achieved by a diffusion process between the

bulk gas and the aerosol surface, the condensation kernel is then written for aerosol of size v in the con-

tinuous regime as [3]

I0ðv; tÞ ¼
4pDiMi

qpRT
3v
4p

 �1
3

ðp1i � p
eq
i Þ; ð4Þ

where Di is diffusion coefficient of species i in air and Mi its molar weight, qp the specific mass of

aerosols, assumed to be independent of the particle size, and R ¼ 8:314 J mol�1 K�1 is the molar gas

constant.
The difference between the vapor pressure of i far from the particle, p1i , and the equilibrium vapor

pressure, peqi , is the driving force for transport of i. The latter is the result from thermodynamic equilibrium

between gas and aerosol phase, some models have been developed for multicomponents aerosols, as

Isorropia [19]. There is effective condensation when p1i P peqi ðI0ðv; tÞP 0Þ and effective evaporation when

p1i 6 peqi (I0ðv; tÞ6 0).

Eq. (4) can be rewritten as

I0ðv; tÞ ¼ riðtÞv
1
3; riðtÞ ¼

4pDiMi

qpRT
3

4p

 �1
3

ðp1i � p
eq
i Þ: ð5Þ

The fraction 1=3 is characteristic of diffusion processes and riðtÞ has the dimension of a diffusion coefficient

lm2 s�1.

Let us give an idea of the value of riðtÞ in the case where species i is water: Di ’ 10�4 m2 s�1,

Mi ¼ 1:8	 10�2 kg mol�1, qp ¼ 103 kg m�3, T ¼ 300 K, the water saturation vapor pressure for such
temperature is approximately peqi ’ 3000 Pa.

In the case of condensation, we guess a vapor pressure p1i ¼ 2peqi , then ri is approximately equal to

1:7	 104 lm2 s�1 for pure water droplets.

Expression (4) of the condensation rate of i remains the same in the multicomponents case.

2.1.3. Nucleation kernel

Nucleation of vapor substances in the atmosphere can occur both homogeneously and heteroge-

neously, and may involve several chemical species as the well-known binary nucleation process

H2O–H2SO4.

Theoretical expressions for homogeneous nucleation can be obtained either from kinetic approach [20]

or from thermodynamic considerations [3]. The nucleation rate can generally be written in the form

J0ðtÞ ¼ C exp


� DG�

kbT

�
; ð6Þ
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where DG� is the free energy required to form a stable nucleus and C is a constant depending mainly on

vapor pressures of each chemical species. Some parameterizations of the nucleation rate are available in

[21,22].

2.1.4. Deposition kernel

Aerosols can be removed from atmosphere either by deposing on any ground surfaces (dry deposition),

or by sticking to rain drops (wet scavenging). The impact of both processes are usually proportional to the

ASD, therefore the expression of aerosol loss by deposition is written in the form

on
ot

 �
dep

¼ �Rðv; tÞnðv; tÞ: ð7Þ

That is to note Eq. (7) describes a relaxation process where 1=Rðv; tÞ, time dimensioned, represents the life

time in atmosphere of aerosols of size v.
In the case of dry deposition Rðv; tÞ is expressed in term of a deposition velocity Vdðv; tÞ [18]

Rðv; tÞ ¼ Vdðv; tÞ
Dz

; Vdðv; tÞ ¼
1

Ra þ Rb þ RaRbVsðv; tÞ
þ Vsðv; tÞ; ð8Þ

where Dz is the vertical reference height of the model, Vsðv; tÞ the sedimentation velocity of aerosols of size v,
Ra the aerodynamic resistance between the reference height and the ground, and Rb is the resistance to
Brownian diffusion in the laminar sublayer just above the surface. The expression of Vd is obtained by

analogy with electric circuits.

2.2. Principles and mass flow equation

The coagulation process is quite difficult to modelize in terms of stochastic dynamics because of its non-

linearity. Let us first briefly summarize the stochastic methods already developed for coagulation.

As the coagulation term is non-linear in the ASD ~qq (10), it would then be necessary to know the density ~qq
to simulate exactly the coagulation process. But the density ~qq is precisely the quantity we want to compute.

The key idea to overcome this difficulty is that according to the law of large numbers, the density may be

approximated by the empirical measure of a large number of particles. This leads to work with a large

number of numerical particles and to replace ~qq by the empirical measure in the coagulation mechanism. In
fact non-linearity is replaced by interactions between particles. As a consequence coagulation is treated

accurately only if the number of numerical particles, let us note P , is large enough to ensure that the mean-

field asymptotics holds.

Stochastic algorithms for coagulation mainly differ whether what is associated with one numerical

particle.

To fix one�s mind let us consider one numerical particle labeled by i. In [17] Lushnikov associates with

this particle one physical aerosol of size yi. The drawback of this method is that the number of particles

decreases as coagulation makes the number of aerosol decrease, which is a strong limitation as coagulation
converges in the limit of the number of particles going to infinity.

To avoid this problem Babovsky in [1], Wagner and Eibeck in [2] associate with the particle one unit

mass of aerosols of size yiðtÞ at time t. Then the particle represents a number 1=yiðtÞ of aerosols of size

yi at time t. As coagulation physically preserves the total aerosol mass, the number P of numerical

particles remains constant. This kind of algorithm is then called ‘‘mass flow algorithm,’’ let us note

MFA.

The next step is to extend the MFA to condensation/evaporation, nucleation, and removal. The total

aerosol mass being now likely to vary, a first idea is to allow the number P of particle to vary along time
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[23], as this one is directly linked to the total aerosol mass in MFA. But P decreases with evaporation and

removal, which we would like to avoid for the same previous reasons.

In order to keep a particle number at least non-decreasing, a second idea is to allow the unit mass of

aerosols of each numerical particle to vary, let us note xiðtÞ this varying mass for the ith particle at time t, in
the previous MFA xiðtÞ was always equal to unity. The ith particle now stands for a number ðxi=yiÞðtÞ of
physical aerosols of size yiðtÞ. The varying mass xiðtÞ is connected to the condensation/evaporation and

removal processes, which no longer affect the number of numerical particles.

As the nucleation process is independent of already existing aerosols, it cannot be related to preexisting
numerical particles, and has to be treated by creation of new numerical particles. Then P may increase by

nucleation, which has no impact on the algorithm convergence.

The MFA is based on the aerosol relative mass density ~qqðv; tÞ

~qqðv; tÞ ¼ qðv; tÞ
Q0

; Q0 ¼
Z 1

v0

q0ðvÞ dv: ð9Þ

From (1) one easily gets (calculations are reported in Appendix B)

o~qq
ot
ðv; tÞ ¼

Z v�v0

v0

Q0

Kðu; v� uÞ
v� u ~qqðu; tÞ~qqðv� u; tÞ du� ~qqðv; tÞ

Z 1

v0

Q0

Kðv; uÞ
u

~qqðu; tÞ du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non linear terms of coagulation

þ I0ðv; tÞ
v
� Rðv; tÞ

 �
~qqðv; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

non conservative terms

� oðI0~qqÞ
ov
ðv; tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

conservative term

þ v0J0ðtÞ
Q0

dðv0;vÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
creation term

:

ð10Þ

The three last terms on the right-hand side of (10) can be given an exact probabilistic interpretation at the

continuous time level. Let us underline that some kernels have been modified. The relevant kernels are now
Q0ðKðu; vÞ=vÞ for coagulation, I0ðv; tÞ=v for condensation/evaporation, and v0J0ðtÞ=Q0 for nucleation.

3. Mass flow algorithm

The common idea of stochastic algorithms is to make a large number of independent experiments (let us

say MC) and to average over them. This is called the Monte-Carlo loop.

The state of the system within each experiment is represented at time t by the array of numerical particles
[(yti ;x

t
i), i ¼ 1; . . . ; P t], where P t is the number of numerical particles at time t.

The relative densities are approximated by the sum of Dirac3 masses

~nnðv; tÞ ¼ 1

P 0

XP t
i¼1

xiðtÞdðyiðtÞ;vÞ; ~qqðv; tÞ ¼ 1

P 0

XP t
i¼1

xiðtÞdðyiðtÞ;vÞ: ð11Þ

Note that both relative densities are divided by the initial number of particles P0.
The aerosol size spectrum ½v0; vmax is discretized in a finite number NB of regular bins 16 l6NB,

Bl ¼ ½v�l ; vþl , vþl � v�l ¼ Dv, then the densities (11) are approximated by piecewise constant functions

v 2 Bl; ~nnðv; tÞ ¼ 1

P 0

XP t
i¼1

xt
idðyti2BlÞ; ~qqðv; tÞ ¼ 1

P 0

XP t
i¼1

xt
i

yti
dðyti2BlÞ: ð12Þ

3 d is the Kronecker symbol.
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The choice of vmax does not modify the algorithm, it depends only on the aerosol size spectrum that one

wants to focus on.

In order to make the average over the MC experiments, one needs to conserve the aerosol concentration

and mass in each bin l, which we, respectively, call Nl and Ql. These two arrays are set to zero before the

Monte-Carlo loop but are not reinitialized during the Monte-Carlo loop, on the contrary to (yi;xi).

3.1. Description

The extended MFA is then the following over a time period [0; T ]:

Algorithm 1 (Extended MFA).
[ðNl;QlÞ ¼ ð0; 0Þ, i ¼ 1; . . . ; P 0]

1. Monte-Carlo loop (16mc6MC)
a. Initialization: Calculation of [ðy0i ;x0

i Þ, i ¼ 1; . . . ; P 0]

b. Time loop: [0; T ]
i. Calculation of a time step sk
ii. Integration of (10) from tk to tkþ1 ¼ tk þ sk:

Integration of coagulation:�
yki ;x

k
i

�
!


y
kþ1

2
i ;x

kþ1
2

i

�
Integration of condensation/evaporation and deposition:

y
kþ1

2
i ;x

kþ1
2

i


 �
!
�
ykþ1i ;xkþ1

i

�
Integration of nucleation:

creation of J new particles

iii. Removal of numerical particles:

if ykþ1i 6 v0 then the ith particle is removed.
c. Updating of concentration and mass densities:

From i ¼ 1; . . . ; PT if yTi 2 Bl
then Ql  Ql þ xT

i and Nl  Nl þ xT
i =y

T
i

2. Averaging on the MC experiments.

At the end of the Monte-Carlo loop, Nl and Ql are averaged over the MC
experiments: Nl  Nl 	 Q0=MC=P 0 and Ql  Ql 	 Q0=MC=P 0

The Mass Flow Algorithm is related to the appropriate choice of the sequence of discrete times ðtkÞ. The
time step sk ¼ tkþ1 � tk is computed on the basis of the kernels. The new state at time tkþ1 is computed by

taking into account in a sequential way coagulation, condensation/evaporation, deposition, and nucleation.

The order of the sequence has no impact on the algorithm�s convergence.
We now give some details for each step.

3.2. Initialization

This step consists in calculating the initial state [ðy0i ;x0
i Þ, i ¼ 1; . . . ; P 0] according to a given mass density

v 7!q0ðvÞ.
The mass xi of each particle i is set to unity 8i ¼ 1; . . . ; P 0, x0

i ¼ 1. The calculation of [y0i , i ¼ 1; . . . ; P 0]

may be performed:
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• either by randomly generating each y0i , independently according to the probability density, v 7! ~qq0ðvÞ;
• or by using a deterministic initialization based on the associated cumulative distribution function:

y0i ¼ inf v
Z v

v0

~qq0ðuÞ du
�

P
2i� 1

2P 0

�
: ð13Þ

3.3. Time step

Choosing the appropriate time step is a key issue. On the one hand the time step is supposed to be small

enough compared to time scales of physical processes in order to allow an accurate integration. On the

other hand it is expected to be large enough to avoid a prohibitive CPU time.

Let us then define the time scale of each physical process.

• For coagulation between aerosols of size yki and ykj :

ykj
Q0xk

jKðyki ; ykj Þ
: ð14Þ

• For condensation/evaporation of aerosols of size ykj :

ykj
jI0ðykj ; tkÞj

: ð15Þ

• For deposition of aerosol of size ykj :

1

Rðykj ; tkÞ
: ð16Þ

• For nucleation of aerosols:

Q0

v0J0ðtÞ
: ð17Þ

As the coagulation kernel is unbounded the smallest time scale is usually due to coagulation. Let us note

1=kk the smallest time scale for coagulation whose expression is derived from (14)

kk ¼ Q0 max
i;j¼1;...;Pk

xk
jKðyki ; ykj Þ
ykj

 !
: ð18Þ

Then sk is usually defined as [1]

sk ¼
c
kk

; ð19Þ

where c is a constant, As c2 is the proportion of particles which should coagulate twice, c must be kept
small, it is usually equal to 0.1.

In practice, to ensure an accurate integration of other processes one has to check that sk remains small

compared to (15)–(17).

The calculation of kk (18) requires a double loop on Pk, which can be expensive in CPU time if Pk

becomes large. For most coagulation kernels this double loop can be avoided, we give further details in

Appendix C.
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3.4. Calculation of the state at tkþ1

The calculation of the new state of the system at time tkþ1 is performed by the successive integration of

each physical process, the order of integration has no impact on the numerical solution and the algorithm�s
convergence.

3.4.1. Integration of coagulation

An array of integers Ji, i ¼ 1; . . . ; Pk, and an array of real numbers Ui, i ¼ 1; . . . ; Pk, are randomly

generated with the respective uniform probability laws over [1; . . . ; Pk] and [0; 1].
Integration of coagulation is performed by making coagulate the numerical particle i (i ¼ 1 to Pk) and Ji

if the following condition is met:

i ¼ 1; . . . ; Pk; y
kþ1

2
i  yki þ ykJi if Ui6 Q0

Kðyki ; ykJiÞ
ykJi

xk
Ji
sk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

: ð20Þ

The calculation of sk ensures that A always within [0; 1].

3.4.2. Integration of condensation/evaporation and deposition

This step is performed in a deterministic way, that is to say through the integration over the time step sk
of the following ODE system:

i ¼ 1; . . . ; Pk; _yyi ¼ I0ðyi; tÞ; _xxi ¼ xi
I0ðyi; tÞ
yi


� Rðyi; tÞ

�
ð21Þ

with (y
kþ1

2
i ;x

kþ1
2

i ) as initial values. Provided the time step sk is small compared to the time scales of con-

densation/evaporation and deposition, Eq. (21) can be solved by an explicit Euler scheme:

i ¼ 1; . . . ; Pk; ykþ1i ¼ y
kþ1

2
i þ skI0 y

kþ1
2

i ; tk

 �

; xkþ1
i ¼ x

kþ1
2

i
ykþ1i

y
kþ1

2
i

e
�skR y

kþ1
2

i ;tk


 �
: ð22Þ

Letting the weights xi of particles evolve with condensation/evaporation and deposition enables to keep the

number of particles constant.

3.4.3. Integration of nucleation

According to Eq. (10) the nucleation process produces a global mass v0J0ðtkÞsk of aerosols of size v0
within the time step sk.

This mass is created independently from already existing aerosols on the contrary to condensation/

evaporation, new numerical particles have then to be created to represent this incoming mass.

Then we define J new numerical particles

xi ¼ 1; ykþ1i ¼ v0; i ¼ Pk þ 1; . . . ; Pk þ J ; ð23Þ

where J is the integral part of v0J0ðtkÞsk. The fractionary part of v0J0ðtkÞsk can be treated

• either by creating a new numerical particle with weight xPkþJþ1 ¼ 1 if the following condition is met:

U 6 v0J0ðtkÞsk � J ; ð24Þ

where U is a real number randomly generated with the uniform probability law over [0; 1]
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• or by creating a new numerical particle with modified weight

xPkþJþ1 ¼ v0J0ðtkÞsk � J : ð25Þ

The number of numerical particles is then increased, Pkþ1 ¼ Pk þ J or Pkþ1 ¼ Pk þ J þ 1.

4. Some numerical tests

4.1. Numerical setup

Analytical solutions of the GDE (1) are available for academic cases only, i.e., constant or linear kernels,

and assuming v0 ¼ 0 . In the case of coupled coagulation and condensation, academic cases are nevertheless

interesting as they represent the limiting behavior of an ASD undergoing such processes.

Some analytical solutions are available with the following initial densities and kernels [24]:
• Initial ASD:

ðaÞ n0ðvÞ ¼
n0
vm

exp


� v
vm

�
; ð26Þ

where vm and n0 are, respectively, the mean aerosol volume and the total aerosol concentration. We
choose vm ¼ 0:029 lm3 and n0 ¼ 106#aerosols cm�3.

• (1) Constant coagulation and constant condensation:

Kðu; vÞ ¼ K0; Iðv; tÞ ¼ r: ð27Þ

• (2) Constant coagulation and linear condensation:

Kðu; vÞ ¼ K0; Iðv; tÞ ¼ rv: ð28Þ

• (3) Linear coagulation and linear condensation:

Kðu; vÞ ¼ K0ðuþ vÞ; Iðv; tÞ ¼ rv; ð29Þ

where K0 and r are constants.

In Table 1, for each case we define the time scales of coagulation (sc) and condensation (sd), the ratio be-
tween characteristic times (K), and the dimensionless total number (M0ðtÞ) and mass concentration (M1ðtÞ).

One can check that the time scale of coagulation is the time period at the end of which the total aerosol

concentration is divided by two for (1) and (2), by e1�e ’ 0:18 for (3) assuming K close to unity.

In the same way the time scale of condensation is the time period at the end of which the total aerosol

volume is multiplicated by 1þ lnð2Þ ’ 1:7 for (1) assuming K close to unity, by e for (2) and (3).

Moments in case (2) are not coupled, i.e., M0 depend only of coagulation and M1 only of condensation.

That is why cases (1) and (3) are also interesting asM1 in case (1) andM0 in case (3) depend of both physical

processes.

Table 1

Time scales and dimensionless moments

sc sd K ¼ sc=sd M0ðtÞ M1ðtÞ

(1) 2=K0n0 vm=r 2r=K0n0vm 1=ð1þ t
sc
Þ 1þ K lnð1þ t

sc
Þ

(2) 2=K0n0 1=r 2r=K0n0 1=ð1þ t
sc
Þ expð tsdÞ

(3) 1=K0n0vm 1=r r=K0n0vm exp 1
K 1� exp t

sd


 �
 �
expð tsdÞ
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We give the solution v 7!nðv; tÞ for each case, they are obtained by Laplace transform [24] with the initial

density (a), the ASD moments M0 and M1 are derived in Table 1.

• (1) Constant coagulation and constant condensation:

nðv; tÞ ¼ n0
vm

ðM0Þ2

M1 þ KðM0 � 1Þ exp

�

v
vm
M0 þ KðM0 � 1Þ
M1 þ KðM0 � 1Þ

�
ð30Þ

this is an approximation of the analytical solution, valid for vP vmKð1þ ðt=scÞÞ.
• (2) Constant coagulation and linear condensation:

nðv; tÞ ¼ n0
vm

ðM0Þ2

M1

exp


� v
vm

M0

M1

�
: ð31Þ

• (3) Linear coagulation and linear condensation:

nðv; tÞ ¼ n0
M0

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M0

p exp


� ð1�M1Þð2�M0Þ

v
vm

�
I1 2ð1


�M1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M0

p v
vm

�
; ð32Þ

where I1 is the modified Bessel function of first kind and first order.

If K� 1 the characteristic time of coagulation is much shorter than this of condensation, which means

that, within a time period sc, condensation may be neglected as compared to coagulation. On the contrary if

K� 1 condensation dominates the ASD evolution. In order to have a real coupling between both processes

we then choose K equal to 1.

In case (1) the coagulation constant is chosen as the Brownian constant (3), in case (2) and (3) the
coagulation and condensation constants are chosen so that time scales are equal to those of case (1).

Numerical values of kernels and time scales are gathered in Table 2.

4.2. Calculations of errors

We compute the mean relative quadratic error for the concentration density:

error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

nnumðv; T Þ � nthðv; T Þ
nthðv; T Þ

 �2

dv

s
; ð33Þ

where v 7!nnumðv; T Þ is the mean numerical density over the MC experiments and v 7!nthðv; T Þ is the the-

oretical density.

As the aerosol size spectrum is discretized in NB bins of width Dv, the integral in Eq. (33) is approxi-
mated by

Dv
XNB
l¼1

nnumðvl; T Þ � nthðvl; T Þ
nthðvl; T Þ

 �2

; ð34Þ

where vl ¼ ðvþl � v�l Þ=2.

Table 2

Numerical values for kernels and time scales

K0 r sc sd K

(1) 6:405	 10�10 cm3 s�1 9:2	 10�6 lm3 s�1 �3122.6 s �3122.6 s �1
(2) 6:405	 10�10 cm3 s�1 3:202	 10�4 s�1 �3122.6 s �3122.6 s �1
(3) 1:115	 10�8 cm3 lm�3 s�1 3:202	 10�4 s�1 �3122.6 s �3122.6 s �1
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4.3. Tests

4.3.1. Convergence characterization

We have tested the convergence of the algorithm in the case (2) after a time period sc=2. The final volume

density is shown in Fig. 8.

The main parameters of the MFA algorithm are the number of numerical particles, P , and the number of

Monte-Carlo experiments, MC.
Fig. 1 illustrates the decrease of quadratic errors with respect to P and Fig. 2 with respect to MC.
The asymptotic behavior of the relative quadratic error turns out to be one expected with stochastic

algorithms:

error � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MC 	 P
p ð35Þ

Fig. 2. Relative quadratic error on the concentration density in function of the Monte-Carlo number.

Fig. 1. Relative quadratic error on the concentration density in function of the numerical particles number.
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which suggests the existence of a ‘‘central limit theorem’’ for coupled coagulation condensation. We must

point out that Eq. (35) represents an asymptotic result, indeed to make MC run to infinity, keeping P
constant, will not allow the error to vanish, because the convergence of coagulation, a non-linear process, is

achieved with P going to infinity. Eq. (35) implies that accuracy is asymptotically proportional to the
product MC 	 P . Indeed we check in Fig. 3 that for a given accuracy, let us say 0.7, the product MC 	 P
remains roughly constant equal to 22,000.

As stochastic methods are usually expensive in terms of calculation time, it is also interesting to de-

termine the CPU time behavior with respect to MC and P . Figs. 4 and 5 show, respectively, in LOG10 scale

the CPU time in function of P and MC. It is found that the CPU time evolves as

CPU � MC 	 P
ffiffiffi
P
p

: ð36Þ

Fig. 4. CPU time in function of the numerical particle number, LOG10 scale.

Fig. 3. Relative quadratic error the concentration density, illustration of the accuracy funtion of MC 	 P .
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As we would like a good accuracy with a CPU time as low as possible, we investigate the ratio between

accuracy and CPU time:

accuracy � MC 	 P ) accuracy

CPU
�

ffiffiffi
P
p

: ð37Þ

As we have pointed out with Eq. (35), Eq. (37) represents an asymptotic behavior, then provided P is large
enough, it suggests that for a given accuracy one has better to take a number of numerical particles as low

as possible with appropriate cycling.

Fig. 5. CPU time in function of the Monte-Carlo number, LOG10 scale.

Fig. 6. Constant coagulation and constant condensation, CPU time¼ 106 s.
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The results obtained here does not depend on the exact solution taken, therefore we do not repeat these
results for all cases.

4.3.2. Limiting cases

For atmospheric aerosols the coagulation and condensation/evaporation are generally bounded as fol-
lows:

Kðu; vÞ6Cðuþ vÞ; I0ðv; tÞ6 rv: ð38Þ

Constant and linear kernels appear to be limiting cases for both processes, therefore it appears interesting

to investigate the algorithm�s behavior for such cases. Furthermore linear coagulation appears for tur-

bulent diffusion and linear condensation is encountered when chemical reactions occur near the aerosol

surface.

Figs. 8 and 9 with linear condensation are characterized by an accumulation of particles at large sizes.

Small particles are never completely removed since the condensation rate vanishes for small particles.
Linear coagulation emphasizes this spreading effect towards large sizes compared to constant coagulation.

That is to note that as the linear coagulation also vanishes for small volumes, small aerosols are removed

neither by condensation nor coagulation, which results in a ASD pick on small aerosols.

Cases with constant condensation (Figs. 6 and 7) are characterized by the fact that at any time t there
remain no aerosols smaller than rt, i.e., vmðt=scÞ. Then after the time period sc=2 the ASD breaks down

below 0:014 lm3.

As the condensation does not spread the ASD all over the size spectrum, the maximum of the volume

density decreases slowerly then linear condensation.
That is to note the approximation of the analytical solution in case (1) (Fig. 6) is not reliable below 1:5vm,

i.e., 0:043 lm3.

Fig. 7. Linear coagulation and constant condensation, CPU time¼ 1053 s.
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Fig. 9. Linear coagulation and linear condensation, CPU time¼ 878 s, relative error¼ 0.28.

Fig. 8. Constant coagulation and linear condensation, CPU time¼ 107 s, relative error¼ 0.55.
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4.3.3. Realistic cases

We present in Fig. 10, a comparison between the MFA and a finite element method, let us note

FEM, in the case of Brownian coagulation and diffusive condensation limited to the continuous regime,

for which kernels are defined in Sections 2.1.1 and 2.1.2. In this case the GDE admits no analytical

solution.

Finite element or collocation methods have already been developed, we refer here to [11,12,25]. They

differ depending on the kind of finite elements used. The one we have been developing is based on a spectral
decomposition on orthogonal polynomials. The FEM enables to solve the GDE in a coupled way and

seems to be reliable for operational 3D models.

Time scales of coagulation and condensation depend on the aerosol size, nevertheless one can define

average time scales for both processes

sc ¼
2

K0n0
; sd ¼

ðvmÞ
2
3

r
: ð39Þ

We choose K0 as the Brownian constant (3) and in order to have comparable time scales we determine r so

that sc ¼ sd, then r ¼ 3	 10�5 lm2 s�1, although it may not be a realistic time scale for condensation.

5. Conclusion

• We have presented in this article a new algorithm based on a stochastic mass flow formulation for the

integration of the GDE of monocomponent aerosols. The key point is that this algorithm may serve as a

reference solution for benchmarking other numerical methods intended for insertion in three dimension

Fig. 10. Brownian coagulation and diffusive condensation.
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models. On the contrary to many other algorithms, the theoretical basis is well found, which ensures con-

vergence results. This algorithm is moreover easy to implement.

• This algorithm can be quite easily extended to multicomponents aerosols, the mass xiðtÞ of the ith

particle is then split into s ¼ 1; . . . ; c;xs
i ðtÞ, where c is the number of chemical species involved. By

getting the mass flow equation for the multicomponent case, one can adjust the integration of each

process.

• Future works concern the search for algorithms to be used in a 3D framework. The first step will be the

validation of such methods by comparison with the mass flow algorithm.
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Appendix A. Full expressions of kernels

A.1. Coagulation kernel

• In the continuous regime:

Kcðu; vÞ ¼ 4pðDu þ DvÞðru þ rvÞ; ru ¼
3u
4p

 �1
3

; ðA:1Þ

where ru and Du are, respectively, the aerosols radius and the diffusion coefficient for aerosols of size u,
this latter can be easily estimated in the continuous regime from Einstein relation

Du ¼
kbT

6plairru
; ðA:2Þ

where kb is Boltzmann�s constant, T the temperature, and lair is the dynamic viscosity of air.

• In the free molecular regime:

Kmðu; vÞ ¼ pðru þ rvÞ2ðc2u þ c2vÞ
1
2; cu ¼

8kbT
pqpu

 !1
2

ðA:3Þ

where qp is the specific mass of aerosols, assumed to be independent of the aerosol size, and cu is the

mean speed of aerosols of size u, derived from the Kinetics theory of gases.

Between both regimes, i.e., 0:16Kn 6 10, Eqs. (A.1) and (A.3) may not be valid. A theoretical correcting

function f was proposed by Fuchs [26] for the transition regime, using the limit sphere method

Kðu; vÞ ¼ Kcðu; vÞf ðu; vÞ; f ðu; vÞ ¼ ru þ rv
ru þ rv þ guv

 
þ 4ðDu þ DvÞ
ðc2u þ c2vÞ

1
2ðru þ rvÞ

!�1
ðA:4Þ

with

guv ¼ ðg2u þ g2vÞ
1
2; gu ¼

1

6ruku
ð2ru
h

þ kuÞ3 � ð4r2u þ k2
uÞ

3=2
i
� 2ru; ku ¼

8Du

pcu
: ðA:5Þ
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From the continuous to the transition regime, the diffusion coefficient Du has also to be corrected as

follows:

Du ¼
kbT

6plairru
Cun; ðA:6Þ

where Cun is a correction factor, usually called Cunningham coefficient. Several expressions of Cun have

been proposed, either empirically [27] or theoretically [28]. A now widely used expression is the one of

Phillips [29] who obtains by solving Boltzmann�s equations around a spherical particle

Cun ¼
5þ 4c1Kn þ 3ðc21 þ 1ÞK2

n þ 6c2ðc21 þ 2ÞK3
n

5� c1Kn þ c2½ð8þ paÞ=3ðc21 þ 2ÞK2
n

ðA:7Þ

with c1 ¼ ð2� aÞ=a, c2 ¼ 1=ð2� aÞ, and a a slipping coefficient, giving the probability that molecules slip to

the particle�s surface.

A.2. Condensation/evaporation kernel

The condensation/evaporation kernel in the free molecular regime is given by

Im0 ðv; tÞ ¼ pðrvÞ2aci
Mi

RT
ðp1i � p

eq
i Þ; rv ¼

3v
4p

 �1
3

; ðA:8Þ

where Mi is the molar weight of species i, R the perfect gas constant, T the temperature, p1i � p
eq
i the

gradient of vapor pressure of i, a the probability for one gas molecule to stick to the aerosol, and ci is the
mean speed of molecules of species i, which is usually linked to the diffusion coefficient of i by Di ¼ kairci=2.

In the transition regime the condensation kernel can be interpolated by using the limit sphere method.

The generalized kernel can be corrected from the continuous one (4) as follows:

I0ðv; tÞ ¼ Ic0ðv; tÞf ðKn; aÞ; ðA:9Þ

where f ðKn; aÞ is a correction function depending on the Knudsen number and a. Some theoretical ex-
pressions of f have been derived for spherical particles [28,30,31]. We give the widely employed expression

of Dahneke [32]

f ðKn; aÞ ¼
1þ Kn

1þ 2Knð1þ KnÞ=a
; Kn ¼

rv
kair

: ðA:10Þ

One can check that for great Knudsen numbers Eq. (A.9) converges toward the theoretical expression in the

free molecular regime (A.8).

Appendix B. Mass flow equation

The mass flow equation is the equation on the relative mass density. By multiplying (1) by the aerosol
size v, one obtains

oq
ot
ðv; tÞ ¼ v

2

Z v�v0

v0

Kðu; v� uÞnðu; tÞnðv� u; tÞ du� qðv; tÞ
Z 1

v0

Kðv; uÞnðu; tÞ du� v oðI0nÞ
ov
ðv; tÞ

þ dðv0;vÞvJ0ðtÞ: ðB:1Þ
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The coagulation gain may be divided into two equal parts as v ¼ uþ ðv� uÞ, then the fraction 1=2 dis-

appears, and the condensation term may be split by integration

v
oðI0nÞ
ov
¼ oðI0qÞ

ov
� I0q

v
; ðB:2Þ

we have then

oq
ot
ðv; tÞ ¼

Z v�v0

v0

Kðu; v� uÞ
v� u qðu; tÞqðv� u; tÞ du� qðv; tÞ

Z 1

v0

Kðv; uÞ
u

qðu; tÞ du� oðI0qÞ
ov
þ I0q

v

þ dðv0;vÞv0J0ðtÞ: ðB:3Þ

The mass flow equation is obtained by normalizing with the total initial aerosol mass Q0

o~qq
ot
ðv; tÞ ¼

Z v�v0

v0

Q0

Kðu; v� uÞ
v� u ~qqðu; tÞ~qqðv� u; tÞ du� ~qqðv; tÞ

Z 1

v0

Q0

Kðu; vÞ
u

qðu; tÞ du� oðI0~qqÞ
ov

þ I0~qq
v
þ v0J0ðtÞ

Q0

dðv0;vÞ: ðB:4Þ

Appendix C. Calculation of kk

The definition of kk involves a double loop on the numerical particles due to the coagulation kernel

kk ¼ Q0 max
i;j¼1;...;Pk

xk
jKðyki ; ykj Þ
ykj

 !
: ðC:1Þ

This can be avoided by closely majorating kk, first we derive from (C.1)

kk 6Q0

maxj xk
j

minj ykj
	max

i;j
Kðyki ; ykj Þ: ðC:2Þ

As most coagulation kernels can be put in the form

Kðu; vÞ ¼ 1

2
gðuÞhðvÞð þ hðuÞgðvÞÞ ðC:3Þ

the double loop is majorated by

max
i;j

Kðyki ; ykj Þ6 max
i
hðyki Þ 	max

j
gðykj Þ: ðC:4Þ

Then by making four single loops we obtain an upper bound for kk

kk 6Q0

maxj xk
j

minj ykj
	max

i
hðyki Þ 	max

j
gðykj Þ: ðC:5Þ

For example the continuous Brownian kernel (2) may be majorated as follows:

max
i;j

Kðyki ; ykj Þ6
2kbT
3lair

2

2
4 þmax

i;j

yki
ykj

 !1
3

þmax
i;j

ykj
yki

 !1
3

3
56

4kbT
3lair

1

"
þ maxiðyki Þ

miniðyki Þ

 �1
3

#
: ðC:6Þ
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